Wednesday, October 26, 2011

Rare Ancient Egyptian Photos

Ancient Egypt Pictures, Copyright Free

Egyptian Dwelling

Ancient Egypt House

Ancient Egypt Brick Making

Ancient Egypt Theban Tomb

Temple of Edfu

Ancient Egypt, The Sphinx and second pyramid

Ancient Egypt Statues of,Amenhotep

Tuesday, October 4, 2011

Ancient Ship Building in Greece and Rome

Shipbuilding in Ancient Greece and Rome.

In considering the history of the development of shipbuilding, we cannot fail to be struck with the favourable natural conditions which existed in Greece for the improvement of the art. On the east and west the mainland was bordered by inland seas, studded with islands abounding in harbours. Away to the north-east were other enclosed seas, which tempted the enterprise of the early navigators. One of the cities of Greece proper, Corinth, occupied an absolutely unique position for trade and colonization, situated as it was on a narrow isthmus commanding two seas. The long narrow Gulf of Corinth opening into the Mediterranean, and giving access to the Ionian Islands, must have been a veritable nursery of the art of navigation, for here the early traders could sail for long distances, in easy conditions, without losing sight of land. The Gulf of Ægina and the waters of the Archipelago were equally favourable. The instincts of the people were commercial, and their necessities made them colonizers on a vast scale; moreover, they had at their disposal the experience in the arts of navigation, acquired from time immemorial, by the Egyptians and Phœnicians. Nevertheless, with all these circumstances in their favour, the Greeks,29 at any rate up to the fourth century b.c., appear to have contributed nothing to the improvement of shipbuilding.8 The Egyptians and Phœnicians both built triremes as early as 600 b.c., but this class of vessel was quite the exception in the Greek fleets which fought at Salamis 120 years later.
The earliest naval expedition mentioned in Greek history is that of the allied fleets which transported the armies of Hellas to the siege of Troy about the year 1237 b.c. According to the Greek historians, the vessels used were open boats, decks not having been introduced into Greek vessels till a much later period.
The earliest Greek naval battle of which we have any record took place about the year 709 b.c., over 500 years after the expedition to Troy and 1,000 years after the battle depicted in the Temple of Victory at Thebes. It was fought between the Corinthians and their rebellious colonists of Corcyra, now called Corfu.
Some of the naval expeditions recorded in Greek history were conceived on a gigantic scale. The joint fleets of Persia and Phœnicia which attacked and conquered the Greek colonies in Ionia consisted of 600 vessels. This expedition took place in the year 496 b.c. Shortly afterwards the Persian commander-in-chief, Mardonius, collected a much larger fleet for the invasion of Greece itself.
After the death of Cambyses, his successor Xerxes collected a fleet which is stated to have numbered 4,200 vessels, of which 1,200 were triremes. The remainder appears to have been divided into two classes, of which the larger were propelled with twenty-five and the smaller with fifteen oars a-side. This fleet, after many misfortunes at sea, and after gaining a hard-fought victory over the Athenians, was finally destroyed by 30the united Greek fleet at the ever-famous battle of Salamis. The size of the Persian monarch's fleet was in itself a sufficient proof of the extent of the naval power of the Levantine states; but an equally convincing proof of the maritime power of another Mediterranean state, viz., Carthage, at that early period—about 470 b.c. —is forthcoming. This State equipped a large fleet, consisting of 3,000 ships, against the Greek colonies in Sicily; of these 2,000 were fighting galleys, and the remainder transports on which no less than 300,000 men were embarked. This mighty armada was partly destroyed in a great storm. All the transports were wrecked, and the galleys were attacked and totally destroyed by the fleets of the Greek colonists under Gelon on the very day, according to tradition, on which the Persians were defeated at Salamis. Out of the entire expedition only a few persons returned to Carthage to tell the tale of their disasters.
The foregoing account will serve to give a fair idea of the extent to which shipbuilding was carried on in the Mediterranean in the fifth century before the Christian era.
We have very little knowledge of the nature of Greek vessels previously to 500 b.c. 9 Thucydides says that the ships engaged on the Trojan expedition were without decks.
According to Homer, 1,200 ships were employed, those of the Bœotians having 120 men each, and those of Philoctetes 50 men each. Thucydides also relates that the earliest Hellenic triremes were built at Corinth, and that Ameinocles, a Corinthian naval architect, built four ships for the Samians about 700 b.c.; but triremes did not become common until the time of the Persian War, except in Sicily and Corcyra (Corfu), in which states considerable numbers were in use a little time before the war broke out.
Greek unireme. About 500 B.C.
Fig. 8.—Greek unireme. About 500 b.c.
Fig. 8 is an illustration of a single-banked Greek galley of the date about 500 b.c., taken from an Athenian painted vase now in the British Museum. The vessel was armed with a ram; seventeen oars a-side are shown. There is no space on the vase to show in detail the whole of the mast and rigging, but their presence is indicated by lines.
Greek bireme. About 500 B.C.
Fig. 9.—Greek bireme. About 500 b.c.
Fig. 9 is a representation of a Greek bireme of about the date 500 b.c. —that is to say, of the period immediately preceding the Persian War. It is taken from a Greek vase in the 32British Museum, which was found at Vulci in Etruria. It is one of the very few representations now in existence of ancient Greek biremes. It gives us far less information than we could wish to have. The vessel has two banks of oars, those of the upper tier passing over the gunwale, and those of the lower passing through oar-ports. Twenty oars are shown by the artist on each side, but this is probably not the exact number used. Unfortunately the rowers of the lower tier are not shown in position. The steering was effected by means of two large oars at the stern, after the manner of those in use in the Egyptian ships previously described. This is proved by another illustration of a bireme on the same vase, in which the steering oars are clearly seen. The vessel had a strongly marked forecastle and a ram fashioned in the shape of a boar's head. It is a curious fact that Herodotus, in his history (Book III.), mentions that the Samian ships carried beaks, formed to resemble the head of a wild boar, and he relates how the Æginetans beat some Samian colonists in a sea-fight off Crete, and sawed off the boar-head beaks from the captured33 galleys, and deposited them in a temple in Ægina. This sea-fight took place about the same time that the vases were manufactured, from which Figs. 8 and 9 are copied. There was a single mast with a very large yard carrying a square sail. The stays are not shown, but Homer says that the masts of early Greek vessels were stayed fore and aft.
Fragment of a Greek galley showing absence of deck. About 550 B.C.
Fig. 10.—Fragment of a Greek galley showing absence of deck. About 550b.c.
It is impossible to say whether this vessel was decked. According to Thucydides, the ships which the Athenians built at the instigation of Themistocles, and which they used at Salamis, were not fully decked. That Greek galleys were sometimes without decks is proved by Fig. 10, which is a copy of a fragment of a painting of a Greek galley on an Athenian vase now in the British Museum, of the date of about 550 b.c. It is perfectly obvious, from the human figures in the galley, that there was no deck. Not even the forecastle was covered in. The galleys of Figs. 8 and 9 had, unlike the Phœnician bireme of Fig. 7, no fighting-deck for the use of the soldiers. There was also no protection for the upper-tier rowers, and in this respect they were inferior to the Egyptian ship shown in Fig. 6. It is probable that Athenian ships at Salamis also had no fighting, or flying decks for the use of the soldiers; for, according to Thucydides, Gylippos, when exhorting the Syracusans, nearly sixty years later, in 413 b.c., said, "But to them (the Athenians) the employment of troops on deck is a novelty." Against this view, however, it must be stated that there are now in existence at Rome two grotesque pictures of Greek galleys on a painted vase, dating from about 550 b.c., in which the soldiers are clearly depicted standing and fighting upon a flying deck. Moreover, Thucydides, in describing a sea-fight between the Corinthians and the Corcyreans in 432 b.c., mentions that the decks of both fleets were crowded with heavy infantry archers and javelin-men, "for their naval engagements were still of the old clumsy sort." Possibly this34 last sentence gives us a clue to the explanation of the apparent discrepancy. The Athenians were, as we know, expert tacticians at sea, and adopted the method of ramming hostile ships, instead of lying alongside and leaving the fighting to the troops on board. They may, however, have been forced to revert to the latter method, in order to provide for cases where ramming could not be used; as, for instance, in narrow harbours crowded with shipping, like that of Syracuse.
It is perfectly certain that the Phœnician ships which formed the most important part of the Persian fleet at Salamis carried fighting-decks. We have seen already (p. 28) that they used such decks in the time of Sennacherib, and we have the distinct authority of Herodotus for the statement that they were also employed in the Persian War; for, he relates that Xerxes returned to Asia in a Phœnician ship, and that great danger arose during a storm, the vessel having been top-heavy owing to the deck being crowded with Persian nobles who returned with the king.
Galley showing deck and superstructure. About 600 B.C. From an Etruscan
imitation of a Greek vase.
Fig. 11.—Galley showing deck and superstructure. About 600 b.c. From an Etruscan imitation of a Greek vase.
Fig. 11, which represents a bireme, taken from an ancient Etruscan imitation of a Greek vase of about 600 b.c., clearly shows soldiers fighting, both on the deck proper and on a raised, or flying, forecastle.
In addition to the triremes, of which not a single illustration35 of earlier date than the Christian era is known to be in existence, both Greeks and Persians, during the wars in the early part of the fifth century b.c., used fifty-oared ships called penteconters, in which the oars were supposed to have been arranged in one tier. About a century and a half after the battle of Salamis, in 330 b.c., the Athenians commenced to build ships with four banks, and five years later they advanced to five banks. This is proved by the extant inventories of the Athenian dockyards. According to Diodoros, they were in use in the Syracusan fleet in 398 b.c. Diodoros, however, died nearly 350 years after this epoch, and his account must, therefore, be received with caution.
The evidence in favour of the existence of galleys having more than five superimposed banks of oars is very slight.
Alexander the Great is said by most of his biographers to have used ships with five banks of oars; but Quintus Curtius states that, in 323 b.c., the Macedonian king built a fleet of seven-banked galleys on the Euphrates. Quintus Curtius is supposed by the best authorities to have lived five centuries after the time of Alexander, and therefore his account of these ships cannot be accepted without question.
It is also related by Diodoros that there were ships of six and seven banks in the fleet of Demetrios Poliorcetes at a battle off Cyprus in 306 b.c., and that Antigonos, the father of Poliorcetes, had ships of eleven and twelve banks. We have seen, however, that Diodoros died about two and a half centuries after this period. Pliny, who lived from 61 to 115a.d., increases the number of banks in the ships of the opposing fleets at this battle to twelve and fifteen banks respectively. It is impossible to place any confidence in such statements.
Theophrastus, a botanist who died about 288 b.c., and who was therefore a contemporary of Demetrios, mentions in his36 history of plants that the king built an eleven-banked ship in Cyprus. This is one of the very few contemporary records we possess of the construction of such ships. The question, however, arises, Can a botanist be accepted as an accurate witness in matters relating to shipbuilding? The further question presents itself, What meaning is intended to be conveyed by the terms which we translate as ships of many banks? This question will be reverted to hereafter.
In one other instance a writer cites a document in which one of these many-banked ships is mentioned as having been in existence during his lifetime. The author in question was Polybios, one of the most painstaking and accurate of the ancient historians, who was born between 214 and 204 b.c., and who quotes a treaty between Rome and Macedon concluded in 197 b.c., in which a Macedonian ship of sixteen banks is once mentioned. This ship was brought to the Tiber thirty years later, according to Plutarch and Pliny, who are supposed to have copied a lost account by Polybios. Both Plutarch and Pliny were born more than two centuries after this event. If the alleged account by Polybios had been preserved, it would have been unimpeachable authority on the subject of this vessel, as this writer, who was, about the period in question, an exile in Italy, was tutor in the family of Æmilius Paulus, the Roman general who brought the ship to the Tiber.
The Romans first became a naval power in their wars with the Carthaginians, when the command of the sea became a necessity of their existence. This was about 256 b.c. At that time they knew nothing whatever of shipbuilding, and their early war-vessels were merely copies of those used by the Carthaginians, and these latter were no doubt of the same general type as the Greek galleys. The first Roman fleet appears to have consisted of quinqueremes.
The third century b.c. is said to have been an era of gigantic37 ships. Ptolemy Philadelphos and Ptolemy Philopater, who reigned over Egypt during the greater part of that century, are alleged to have built a number of galleys ranging from thirteen up to forty banks. The evidence in this case is derived from two unsatisfactory sources. Athenæos and Plutarch quote one Callixenos of Rhodes, and Pliny quotes one Philostephanos of Cyrene, but very little is known about either Callixenos or Philostephanos. Fortunately, however, Callixenos gives details about the size of the forty-banker, the length of her longest oars, and the number of her crew, which enables us to gauge his value as an authority, and to pronounce his story to be incredible (see p. 45).
Whatever the arrangement of their oars may have been, these many-banked ships appear to have been large and unmanageable, and they finally went out of fashion in the year 31b.c., when Augustus defeated the combined fleets of Antony and Cleopatra at the battle of Actium. The vessels which composed the latter fleets were of the many-banked order, while Augustus had adopted the swift, low, and handy galleys of the Liburni, who were a seafaring and piratical people from Illyria on the Adriatic coast. Their vessels were originally single-bankers, but afterwards it is said that two banks were adopted. This statement is borne out by the evidence of Trajan's Column, all the galleys represented on it, with the exception of one, being biremes.
Augustus gained the victory at Actium largely owing to the handiness of his Liburnian galleys, and, in consequence, this type was henceforward adopted for Roman warships, and ships of many banks were no longer built. The very word "trireme" came to signify a warship, without reference to the number of banks of oars.
After the Romans had completed the conquest of the38 nations bordering on the Mediterranean, naval war ceased for a time, and the fighting navy of Rome declined in importance. It was not till the establishment of the Vandal kingdom in Africa under Genseric that a revival in naval warfare on a large scale took place. No changes in the system of marine architecture are recorded during all these ages. The galley, considerably modified in later times, continued to be the principal type of warship in the Mediterranean till about the sixteenth century of our era.

Ancient Merchant-ships.

Little accurate information as we possess about the warships of the ancients, we know still less of their merchant-vessels and transports. They were unquestionably much broader, relatively, and fuller than the galleys; for, whereas the length of the latter class was often eight to ten times the beam, the merchant-ships were rarely longer than three or four times their beam. Nothing is known of the nature of Phœnician merchant-vessels. Fig. 12 is an illustration of an Athenian merchant-ship of about 500 b.c. It is taken from the same painted vase as the galley shown on Fig. 9. If the illustration can be relied on, it shows that these early Greek sailing-ships were not only relatively short, but very deep. The forefoot and dead wood aft appear to have been cut away to an extraordinary extent, probably for the purpose of increasing the handiness. The rigging was of the type which was practically universal in ancient ships.
Fig. 13 gives the sheer draught or side elevation, the plan, elevations of the bow and stem, and a midship section of a Roman vessel, which from her proportions and the shape of bow is supposed to have been a merchant-ship. The illustration is taken from a model presented to Greenwich Hospital by Lord Anson. The original model was of white marble, and39 was found in the Villa Mattei in Rome, in the sixteenth century.
We know from St. Paul's experiences, as described in the Acts of the Apostles, that Mediterranean merchant-ships must often have been of considerable size, and that they were capable of going through very stormy voyages. St. Paul's ship contained a grain cargo, and carried 276 human beings.
Fig. 12.—Greek merchant-ship. About 500 b.c.
In the merchant-ships oars were only used as an auxiliary means of propulsion, the principal reliance being placed on masts and sails. Vessels of widely different sizes were in use, the larger carrying 10,000 talents, or 250 tons of cargo. Sometimes, however, much bigger ships were used. For instance, Pliny mentions a vessel in which the Vatican obelisk and its pedestal, weighing together nearly 500 tons, were brought from Egypt to Italy about the year 50 a.d. It is further stated that this vessel carried an additional cargo of 800 tons of lentils to keep the obelisk from shifting on board.
Lucian, writing in the latter half of the second century a.d.,40 mentions, in one of his Dialogues, the dimensions of a ship which carried corn from Egypt to the Piræus. The figures are: length, 180 ft.; breadth, nearly 50 ft.; depth from deck to bottom of hold, 43½ ft. The latter figure appears to be incredible. The other dimensions are approximately those of theRoyal George, described on p. 126.
Roman merchant-ship.
Fig. 13.—Roman merchant-ship.

Details of the Construction of Greek and Roman Galleys.

It is only during the present century that we have learned, with any certainty, what the ancient Greek galleys were like. In the year 1834 a.d. it was discovered that a drain at the Piræus had been constructed with a number of slabs bearing inscriptions, which, on examination, turned out to be the41 inventories of the ancient dockyard of the Piræus. From these inscriptions an account of the Attic triremes has been derived by the German writers Boeckh and Graser. The galleys all appear to have been constructed on much the same model, with interchangeable parts. The dates of the slabs range from 373 to 323 b.c., and the following description must be taken as applying only to galleys built within this period.
The length, exclusive of the beak, or ram, must have been at least 126 ft., the ram having an additional length of 10 ft. The length was, of course, dictated by the maximum number of oars in any one tier, by the space which it was found necessary to leave between each oar, and by the free spaces between the foremost oar and the stem, and the aftermost oar and the stern of the ship. Now, as it appears further on, the maximum number of oars in any tier in a trireme was 62 in the top bank, which gives 31 a side. If we allow only 3 ft. between the oars we must allot at least 90 ft. to the portion of the vessel occupied by the rowers. The free spaces at stem and stern were, according to the representations of those vessels which have come down to us, about 7/24th of the whole; and, if we accept this proportion, the length of a trireme, independently of its beak, would be about 126 ft. 6 in. If the space allotted to each rower be increased, as it may very reasonably be, the total length of the ship would also have to be increased proportionately. Hence it is not surprising that some authorities put the length at over 140 ft. It may be mentioned in corroboration, that the ruins of the Athenian docks at Zea show that they were originally at least 150 ft. long. They were also 19 ft. 5 in. wide. The breadth of a trireme at the water-line, amidships, was about 14 ft., perhaps increasing somewhat higher up, the sides tumbled home above the greatest width. These figures give the width of the hull proper, exclusive of an outrigged gangway, or42 deck, which, as subsequently explained, was constructed along the sides as a passage for the soldiers and seamen. The draught was from 7 to 8 ft.
Such a vessel carried a crew of from 200 to 225, of whom 174 were rowers, 20 seamen to work the sails, anchors, etc., and the remainder soldiers. Of the rowers, 62 occupied the upper, 58 the middle and 54 the lower tier. Many writers have supposed that each oar was worked by several rowers, as in the galleys of the Middle Ages. This, however, was not the case, for it has been conclusively proved that, in the Greek galleys, up to the class of triremes, at any rate, there was only one man to each oar. For instance, Thucydides, describing the surprise attack intended to be delivered on the Piræus, and actually delivered against the island of Salamis by the Peloponnesians in 429 b.c., relates that the sailors were marched from Corinth to Nisæa, the harbour of Megara, on the Athenian side of the isthmus, in order to launch forty ships which happened to be lying in the docks there, and that each sailor carried his cushion and his oar, with its thong, on his march. We have, moreover, a direct proof of the size of the longest oars used in triremes, for the inventories of the Athenian dockyards expressly state that they were 9½ cubits, or 13 ft. 6 in. in length. The reason why the oars were arranged in tiers, or banks, one above the other was, no doubt, that, in this way, the propelling power could be increased without a corresponding increase in the length of the ships. To make a long sea-going vessel sufficiently strong without a closed upper deck would have severely taxed the skill of the early shipbuilders. Moreover, long vessels would have been very difficult to manœuvre, and in the Greek mode of fighting, ramming being one of the chief modes of offence, facility in manœuvring was of prime importance. The rowers on each side sat in the same vertical longitudinal plane, and consequently the length of the inboard43 portions of the oars varied according as the curve of the vessel's side approached or receded from this vertical plane. The seats occupied by the rowers in the successive tiers were arranged one above the other in oblique lines sloping upwards towards the stem, as shown in Figs. 14 and 15. The vertical distance between the seats was about 2 ft. The horizontal gap between the benches in each tier was about 3 ft. The seats were some 9 in. wide, and foot-supports were fixed to each for the use of the rower next above and behind. The oars were so arranged that the blades in each tier all struck the water in the same fore and aft line. The lower oar-ports were about 3 ft., the middle 4¼ ft., and the upper 5½ ft., above the water. The water was prevented from entering the ports by means of leather bags fastened round the oars and to the sides of the oar-ports. The upper oars were about 14 ft. long, the middle 10 ft., and the lower 7½ ft., and in addition to these there were a few extra oars which were occasionally worked from the platform, or deck, above the upper tier, probably by the seamen and soldiers when they were not otherwise occupied. The benches for the rowers extended from the sides to timber supports, inboard, arranged in vertical planes fore and aft. There were two sets of these timbers, one belonging to each side of the ship, and separated by a space of 7 ft. These timbers also connected the upper and lower decks together. The latter was about 1 ft. above the water-line. Below the lower deck was the hold which contained the ballast, and in which the apparatus for baling was fixed.
In addition to oars, sails were used as a means of propulsion whenever the wind was favourable, but not in action.
The Athenian galleys had, at first, one mast, but afterwards, it is thought, two were used. The mainmast was furnished with a yard and square sail.
The upper deck, which was the fighting-platform previously44 mentioned, was originally a flying structure, and, perhaps, did not occupy the full width of the vessel amidships. At the bow, however, it was connected by planking with the sides of the ship, so as to form a closed-in space, or forecastle. This forecastle would doubtless have proved of great use in keeping the ship dry during rough weather, and probably suggested ultimately the closed decking of the whole of the ship. There is no record of when this feature, which was general in ancient Egyptian vessels, was introduced into Greek galleys. It was certainly in use in the Roman warships about the commencement of the Christian era, for there is in the Vatican a relief of about the date 50 a.d. from the Temple of Fortune at Præneste, which represents part of a bireme, in which the rowers are all below a closed deck, on which the soldiers are standing.
In addition to the fighting-deck proper there were the two side platforms, or gangways, already alluded to, which were carried right round the outside of the vessel on about the same level as the benches of the upper tier of rowers. These platforms projected about 18 to 24 in. beyond the sides of the hull, and were supported on brackets. Like the flying deck, these passages were intended for the accommodation of the soldiers and sailors, who could, by means of them, move freely round the vessel without interfering with the rowers. They were frequently fenced in with stout planking on the outside, so as to protect the soldiers. They do not appear to have been used on galleys of the earliest period.
We have no direct evidence as to the dimensions of ships of four and five banks. Polybios tells us that the crew of a Roman quinquereme in the first Carthaginian War, at a battle fought in 256 b.c., numbered 300, in addition to 120 soldiers. Now, the number 300 can be obtained by adding two banks of respectively 64 and 62 rowers to the 172 of the trireme. We45 may, perhaps, infer that the quinquereme of that time was a little longer than the trireme, and had about 3 ft. more freeboard, this being the additional height required to accommodate two extra banks of oars. Three hundred years later than the above-mentioned date Pliny tells us that this type of galley carried 400 rowers.
We know no detailed particulars of vessels having a greater number of banks than five till we get to the alleged forty-banker of Ptolemy Philopater. Of this ship Callixenos gives the following particulars:—Her dimensions were: length, 420 ft.; breadth, 57 ft.; draught, under 6 ft.; height of stern ornament above water-line, 79 ft. 6 in.; height of stem ornament, 72 ft.; length of the longest oars, 57 ft. The oars were stated to have been weighted with lead inboard, so as to balance the great overhanging length. The number of the rowers was 4,000, and of the remainder of the crew 3,500, making a total of 7,500 men, for whom, we are asked to believe, accommodation was found on a vessel of the dimensions given. This last statement is quite sufficient to utterly discredit the whole story, as it implies that each man had a cubic space of only about 130 ft. to live in, and that, too, in the climate of Egypt. Moreover, if we look into the question of the oars we shall see that the dimensions given are absolutely impossible—that is to say, if we make the usual assumption that the banks were successive horizontal tiers of oars placed one above the other. There were said to have been forty banks. Now, the smallest distance, vertically, between two successive banks, if the oar-ports were arranged as in Fig. 14, with the object of economizing space in the vertical direction to the greatest possible degree, would be 1 ft. 3 in. If the lowest oar-ports were 3 ft. above the water, and the topmost bank were worked on the gunwale, we should require, to accommodate forty banks, a height of side equal to46 39 ft. × 1 ft. 3 in. + 3 ft. = 51 ft. 9 in. Now, if the inboard portion of the 57 ft. oar were only one-fourth of the whole length, or 14 ft. 3 in., this would leave 57 ft. - 14 ft. 3 in. = 42 ft. 9 in. for the outboard portion, and as the height of gunwale on which this particular length of oar was worked must have been, as shown above, 51 ft. 9 in. above the water, it is evident that the outboard portion of the oar could not be made to touch the water at all. Also, if we consider the conditions of structural strength of the side of a ship honeycombed with oar-ports, and standing to the enormous height of 51 ft. 9 in. above the water-line, it is evident that, in order to be secure, it would require to be supported by numerous tiers of transverse horizontal beams, similar to deck-beams, running from side to side. The planes of these tiers would intersect the inboard portions of many of the tiers of oars, and consequently prevent these latter from being fitted at all.
If we look at the matter from another point of view we shall meet with equally absurd results. The oars in the upper banks of Athenian triremes are known to have been about 14 ft. in length. Underneath them, were, of course, two other banks. If, now, we assume that the upper bank tholes were 5 ft. 6 in.10 above the water-line, and that one-quarter of the length of the upper bank oars was inboard, and if we add thirty-seven additional banks parallel to the first bank, so as to make forty in all, simple proportion will show us that the outboard portion of the oars of the uppermost bank must have been just under 99 ft. long and the total length of each, if we assume, as before, that one quarter of it was inboard, would be 132 ft., instead of the 57 ft. given by Callixenos. Any variations in the above assumptions, consistent with possibilities, would only have 47the effect of bringing the oars out still longer. We are therefore driven to conclude, either that the account given by Callixenos was grossly inaccurate, or else that the Greek word, τεσσαρακοντἠρης, which we translate by "forty-banked ship," did not imply that there were forty horizontal super-imposed tiers of oars.
The exact arrangement of the oars in the larger classes of galleys has always been a puzzle, and has formed the subject of much controversy amongst modern writers on naval architecture. The vessels were distinguished, according to the numbers of the banks of oars, as uniremes, biremes, triremes, quadriremes, etc., up to ships like the great galley of Ptolemy Philopater, which was said to have had forty banks. Now, the difficulty is to know what is meant by a bank of oars. It was formerly assumed that the term referred to the horizontal tiers of oars placed one above the other; but it can easily be proved, by attempting to draw the galleys with the oars and rowers in place, that it would be very difficult to accommodate as many as five horizontal banks and absolutely impossible to find room for more than seven. Not only would the space within the hull of the ship be totally insufficient for the rowers, but the length of the upper tiers of oars would be so great that they would be unmanageable, and that of the lower tiers so small that they would be inefficient. The details given by ancient writers throw very little light upon this difficult subject. Some authors have stated that there was only one man to each oar, and we now know that this was the case with the smaller classes of vessels, say, up to those provided with three, or four, to five banks of oars; but it is extremely improbable that the oars of the larger classes could have been so worked. The oars of modern Venetian galleys were each manned by five rowers. It is impossible in this work to examine closely into all the rival theories as to what constituted48 a bank of oars. It seems improbable, for reasons before stated, that any vessel could have had more than five horizontal tiers. It is certain also that, in order to find room for the rowers to work above each other in these tiers, the oar-ports must have been placed, not vertically above each other, but in oblique rows, as represented in Fig. 14. It is considered by Mr. W. S. Lindsay, in his "History of Merchant Shipping and Ancient Commerce," that each of the oblique rows of oars, thus arranged, may have formed the tier referred to in the designation of the class of the vessel, for vessels larger than quinqueremes. If this were so, there would then be no difficulty in conceiving the possibility of constructing galleys with even as many as forty tiers of oars like the huge alleged galley of Ptolemy Philopater. Fig. 15 represents the disposition of the oar-ports according to this theory for an octoreme.
Fig. 14.—Probable arrangement of oar-ports in ancient galleys.
Fig. 15.—Suggested arrangement of oar-ports in an octoreme.
It appears to be certain that the oars were not very advantageously arranged, or proportioned, in the old Greek galleys, or even in the Roman galleys, till the time of the early Cæsars, for we read that the average speed of the Athenian triremes was 200 stadia in the day. If the stadium were equal in length to a furlong, and the working day supposed to be limited to ten hours, this would correspond to a speed of only two and a49 half miles an hour. The lengths of the oars in the Athenian triremes have been already given (p. 42); even those of the upper banks were extremely short—only, in fact, about a foot longer than those used in modern 8-oared racing boats. On account of their shortness and the height above the water at which they were worked, the angle which the oars made with the water was very steep and consequently disadvantageous. In the case of the Athenian triremes, this angle must have been about 23.5°. This statement is confirmed by all the paintings and sculptures which have come down to us. It is proved equally by the painting of an Athenian bireme of 500 b.c. shown in Fig. 9, and by the Roman trireme, founded on the sculptures of Trajan's Column of about 110 a.d., shown in Fig. 16.11 In fact, it is evident that the ancients, before the time of the introduction of the Liburnian galley, did not understand the art of rowing as we do to-day. The celebrated Liburnian galleys, which were first used by the Romans, for war purposes, at the battle of Actium under Augustus Cæsar, 50were said to have had a speed of four times that of the old triremes. The modern galleys used in the Mediterranean in the seventeenth century are said to have occasionally made the passage from Naples to Palermo in seventeen hours. This is equivalent to an average speed of between 11 and 12 miles per hour.
Roman galley. About 110 A.D.
Fig. 16.—Roman galley. About 110 a.d.
FLiburnian galley. Conjectural restoration.
Fig. 17.—Liburnian galley. Conjectural restoration.
The timber used by the ancient races on the shores of the Mediterranean in the construction of their ships appears to have been chiefly fir and oak; but, in addition to these, many other varieties, such as pitch pine, elm, cedar, chestnut, ilex, or evergreen oak, ash, and alder, and even orange wood, appear to have been tried from time to time. They do not seem to have understood the virtue of using seasoned timber, for we read in ancient history of fleets having been completed ready for sea in incredibly short periods after the felling of the trees. Thus, the Romans are said to have built and equipped a fleet of 220 vessels in 45 days for the purpose of resisting the attacks of Hiero, King of Syracuse. In the second Punic War Scipio put to sea with a fleet which was stated to have been completed in forty days from the time the timber was felled. On the other hand, the ancients believed in all sorts of absurd rules as to the proper day of the moon on which to fell trees1 for shipbuilding purposes, and also as to the quarter from which the wind should blow, and so forth. Thus, Hesiod states that timber should only be cut on the seventeenth day of the moon's age, because the sap, which is the great cause of early decay, would then be sunk, the moon being on the wane. Others extend the time from the fifteenth to the twenty-third day of the moon, and appeal with confidence to the experience of all artificers to prove that timber cut at any other period becomes rapidly worm-eaten and rotten. Some, again, asserted that if felled on the day of the new moon the timber would be incorruptible, while others prescribed a different quarter from which the wind should blow for every season of the year. Probably on account of the ease with which it was worked, fir stood in high repute as a material for shipbuilding.
The structure of the hulls of ancient ships was not dissimilar in its main features to that of modern wooden vessels. The very earliest types were probably without external keels. As the practice of naval architecture advanced, keels were introduced, and served the double purpose of a foundation for the framing of the hull and of preventing the vessel from making leeway in a wind. Below the keel proper was a false keel, which was useful when vessels were hauled up on shore, and above the keelson was an upper false keel, into which the masts were stepped. The stem formed an angle of about 70° with the water-line, and its junction with the keel was strengthened by a stout knee-piece. The design of the stem above water was often highly ornate. The stern generally rose in a graceful curve, and was also lavishly ornamented. Fig. 18 gives some illustrations of the highly ornamented extremities of the stern and prow of Roman galleys. These show what considerable pains the ancients bestowed on the decoration of their vessels. There was no rudder-post, the steering having been effected52 by means of special oars, as in the early Egyptian vessels. Into the keel were notched the floor timbers, and the heads of these latter were bound together by the keelson, or inner keel. Beams connected the top timbers of the opposite branches of the ribs and formed the support for the deck. The planking was put on at right angles to the frames, the butting ends of the planks being connected by dovetails. The skin of the ship was strengthened, in the Athenian galleys, by means of stout planks, or waling-pieces, carried horizontally round the ship, each pair meeting together in front of the stem, where they formed the foundations for the beaks, or rams. The hulls were further strengthened by means of girding-cables, also carried horizontally round the hull, in the53 angles formed by the projection of the waling-pieces beyond the skin. These cables passed through an eye-hole at the stem, and were tightened up at the stern by means of levers. It is supposed that they were of use in holding the ship together under the shock of ramming. The hull was made water-tight by caulking the seams of the planking. Originally this was accomplished with a paste formed of ground sea-shells and water. This paste, however, not having much cohesion, was liable to crack and fall out when the vessel strained. A slight improvement was made when the shells were calcined and turned into lime. Pitch and wax were also employed, but were eventually superseded by the use of flax, which was driven in between the seams. Flax was certainly used for caulking in the time of Alexander the Great, and a similar material has continued to be employed for this purpose down to the present day. In addition to caulking the seams, it was also customary to coat over the bottom with pitch, and the Romans, at any rate, used sometimes to sheath their galleys with sheet lead fastened to the planking with copper nails. This was proved by the discovery of one of Trajan's galleys in Lake Riccio after it had been submerged for over thirteen centuries.
Stem and stern ornaments of galleys.
Fig. 18.—Stem and stern ornaments of galleys.
The bows of the ancient war galleys were so constructed as to act as rams. The ram was made of hard timber projecting Frontispiece.Fig. 19.—Bow of ancient war-galley.beyond the line of the bow, between it and the forefoot. It was usually made of oak, elm, or ash, even when all the54 rest of the hull was constructed of soft timber. In later times it was sheathed with, or even made entirely of, bronze. It was often highly ornamented, either with a carved head of a ram or some other animal, as shown in Figs. 8 to 11; sometimes swords or spear-heads were added, as shown in Figs. 19 and 20. A relic of this ancient custom is found to this day in the ornamentation Bow of ancient war-galley.Fig. 20.—Bow of ancient war-galley.of the prows of the Venetian gondolas. Originally the ram, or rostrum, was visible above the water-line, but it was afterwards found to be far more effective when wholly immersed. In addition to the rams there were side projections, or catheads, above water near the bow. The ram was used for sinking the opposing vessels by penetrating their hulls, and the catheads for shattering their oars when sheering up suddenly alongside. Roman galleys were fitted with castles, or turrets, in which were placed fighting men and various engines of destruction. They were frequently temporary structures, sometimes consisting of little more than a protected platform, mounted on scaffolding, which could be easily taken down and stowed away. The use of these structures was continued till far into the Middle Ages.

Ancient Egyptian Ship Building Illustrated

Shipbuilding in Egypt.

The earliest information on the building of ships is found, as might be expected, on the Egyptian tombs and monuments.7 It is probable that the valley of the Nile was also the first land bordering on the Mediterranean in which ships, as distinguished from more elementary craft, were constructed. Everything is in favour of such a supposition. In the first place, the country was admirably situated, geographically, for the encouragement of the art of navigation, having seaboards on two important inland seas which commanded the commerce of Europe and Asia. In the next place, the habitable portion of Egypt consisted of a long narrow strip of densely peopled, fertile territory, bordering a great navigable river, which formed a magnificent highway throughout the whole extent of the country. It is impossible to conceive of physical circumstances more conducive to the discovery and development of the arts of building and navigating floating structures. The experience gained on the safe waters of the Nile would be the best preparation for taking the bolder step of venturing on the open seas. The character of the two inland seas which form the northern and eastern frontiers of Egypt was such as to favour, to the greatest extent, the spirit of adventure. As a rule, their waters are relatively calm, and the distances to be traversed to reach other lands are inconsiderable. We know that the ancient Egyptians, at a period which the most modern authorities place at about 7,000 years ago, had already attained to a very remarkable degree of civilisation and to a knowledge of the arts of construction on land which has never since been excelled. What is more natural than to suppose that the genius and science which enabled them to build the Pyramids and their vast temples and palaces, to construct huge works for the regulation of the Nile, and to quarry, work into shape, and move into place blocks of granite weighing in some cases several hundreds of tons, should also lead them to excel in the art of building ships? Not only the physical circumstances, but the habits and the religion of the8 people created a demand, even a necessity, for the existence of navigable floating structures. At the head of the delta of the Nile was the ancient capital, the famous city of Memphis, near to which were built the Pyramids, as tombs in which might be preserved inviolate until the day of resurrection, the embalmed bodies of their kings. The roofs of the burial chambers in the heart of the Pyramids were prevented from falling in, under the great weight of the superincumbent mass, by huge blocks, or beams, of the hardest granite, meeting at an angle above the chambers. The long galleries by which the chambers were approached were closed after the burial by enormous gates, consisting of blocks of granite, which were let down from above, sliding in grooves like the portcullis of a feudal castle. In this way it was hoped to preserve the corpse contained in the chamber absolutely inviolate. The huge blocks of granite, which weighed from 50 to 60 tons each, were supposed to be too heavy ever to be moved again after they had been once lowered into position, and they were so hard that it was believed they could never be pierced. Now, even if we had no other evidence to guide us, the existence of these blocks of granite in the Pyramids would afford the strongest presumption that the Egyptians of that remote time were perfectly familiar with the arts of inland navigation, for the stone was quarried at Assouan, close to the first cataract, 583 miles above Cairo, and could only have been conveyed from the quarry to the building site by water.
In the neighbourhood of Memphis are hundreds of other blocks of granite from Assouan, many of them of enormous size. The Pyramid of Men-kau-Ra, or Mycerinus, built about 3633 b.c., was once entirely encased with blocks from Assouan. The Temple of the Sphinx, built at a still earlier date, was formed, to a large extent, of huge pieces of the same material, each measuring 15 × 5 × 3·2 feet, and weighing about 18
 tons. The mausoleum of the sacred bulls at Sakara contains numbers of Assouan granite sarcophagi, some of which measure 13 × 8 × 11 feet. These are but a few instances, out of the many existing, from which we may infer that, even so far back as the fourth dynasty, the Egyptians made use of the arts of inland navigation. We are, however, fortunately not obliged to rely on inference, for we have direct evidence from the sculptures and records on the ancient tombs. Thanks to these, we now know what the ancient Nile boats were like, and how they were propelled, and what means were adopted for transporting the huge masses of building material which were used in the construction of the temples and monuments.
The art of reading the hieroglyphic inscriptions was first discovered about the year 1820, and the exploration of the tombs and monuments has only been prosecuted systematically during the last five-and-twenty years. Most of the knowledge of ancient Egyptian ships has, therefore, been acquired in quite recent times, and much of it only during the last year or two. This is the reason why, in the old works on shipbuilding, no information is given on this most interesting subject. Knowledge is, however, now being increased every day, and, thanks to the practice of the ancient Egyptians of recording their achievements in sculpture in a material which is imperishable in a dry climate, we possess at the present day, probably, a more accurate knowledge of their ships than we do of those of any other ancient or mediæval people.
By far the oldest boats of which anything is now known were built in Egypt by the people who inhabited that country before the advent of the Pyramid-builders. It is only within the last few years that these tombs have been explored and critically examined. They are now supposed to be of Libyan origin and to date from between 5000 and 6000 b.c. In many of these1 tombs vases of pottery have been discovered, on which are painted rude representations of ships. Some of the latter were of remarkable size and character. Fig. 2 is taken from one of these vases. It is a river scene, showing two boats in procession. The pyramid-shaped mounds in the background represent a row of hills. These boats are evidently of very large size. One of them has 58 oars, or more probably paddles, on each side, and two large cabins amidships, connected by a flying bridge, and with spaces fenced off from the body of the vessel. The steering was, apparently, effected by means of three large paddles on each side, and from the prow of one of the boats hangs a weight, which was probably intended for an anchor. It will be noticed that the two ends of these vessels, like the Nile boats of the Egyptians proper, were not waterborne. A great many representations of these boats have now been discovered. They all have the same leading characteristics, though they differ very much in size. Amongst other peculiarities they invariably have an object at the prow resembling two branches of palm issuing from a stalk, and also a mast carrying an ensign at the after-cabin.
The oldest known ships.
Fig. 2.—The oldest known ships. Between 5000 and 6000 b.c.
Some explorers are of opinion that these illustrations do not represent boats, but fortifications, or stockades of some sort. If we relied only on the rude representations painted on the vases, the question might be a moot one. It has, however, been definitely set at rest by Professor Flinders Petrie, who, in the year 1899, brought back from Egypt very large drawings of the same character, taken, not from vases, but from the tombs themselves. The drawings clearly show that the objects are boats, and that they were apparently very shallow and flat-bottomed. It is considered probable that they were employed in over-sea trade as well as for Nile traffic; for, in the same tombs were found specimens of pottery of foreign manufacture, some of which have been traced to Bosnia.
Fig. 3.—Egyptian boat of the time of the third dynasty.
The most ancient mention of a ship in the world's history is to be found in the name of the eighth king of Egypt after Mena, the founder of the royal race. This king, who was at the head of the second dynasty, was called Betou (Boëthos in Greek), which word signifies the "prow of a ship." Nineteen kings intervened between him and Khufu (Cheops), the builder of the Great Pyramid at Ghizeh. The date of this pyramid is given by various authorities as from about 4235 to 3500 b.c. As the knowledge of Egyptology increases the date is set further and further back, and the late Mariette Pasha, who was one of the greatest authorities on the subject, fixed it at 4235 b.c. About five centuries intervened between the reign of Betou and the date of the Great Pyramid. Hence we can infer that ships were known to the Egyptians of the dynasties sixty-seven centuries ago.
Fortunately, however, we are not obliged to rely on inferences drawn from the name of an individual; we actually12 possess pictures of vessels which, there is every reason to believe, were built before the date of the Great Pyramid.
The boat represented by Fig. 3 is of great interest, as it is by far the oldest specimen of a true Egyptian boat that has yet been discovered. It was copied by the late Mr. Villiers Stuart from the tomb of Ka Khont Khut, situated in the side of a mountain near Kâu-el-Kebîr, on the right bank of the Nile, about 279 miles above Cairo.1 The tomb belongs to a very remote period. From a study of the hieroglyphs, the names of the persons, the forms of the pottery found, and the shape, arrangement, and decoration of the tomb, Mr. Villiers Stuart came to the conclusion that it dates from the third dynasty, and that, consequently, it is older than the Great Pyramid at Ghizeh. If these conclusions are correct, and if Mariette's date for the Great Pyramid be accepted, Fig. 3 represents a Nile boat as used about 6,300 years ago—that is to say, about fifteen centuries before the date commonly accepted for the ark. Mr. Villiers Stuart supposes that it was a dug-out canoe, but from the dimensions of the boat this theory is hardly tenable. It will be noted that there are seven paddlers on each side, in addition to a man using a sounding, or else a punt, pole at the prow, and three men steering with paddles in the stern, while amidships there is a considerable free space, occupied only by the owner, who is armed with a whip, or courbash. The paddlers occupy almost exactly one-half of the total length, and from the space required for each of them the boat must have been quite 56 feet long. It could hardly have been less than seven feet wide, as it contained a central cabin, with sufficient space on either side of the latter for paddlers to sit. If it were a "dug-out," the tree from which it was made must have been brought down the river from tropical 1Africa. There is no reason, however, to suppose anything of the sort; for, if the epoch produced workmen skilful enough to excavate and decorate the tomb, and to carve the statues and make the pottery which it contained, it must also have produced men quite capable of building up a boat from planks.
Fig. 4.—Egyptian boat of the time of the fourth dynasty.
The use of sails was also understood at this remote epoch, for it will be noticed that, on the roof of the cabin is lying a mast which has been unshipped. The mast is triangular in shape, consisting of two spars, joined together at the top at an acute angle, and braced together lower down. This form was probably adopted in order to dispense with stays, and thus facilitate shipping and unshipping. It is also worthy of note that this boat appears to have been decked over, as the feet of all those on board are visible above the gunwale. A representation of a very similar boat was found in the tomb of Merâb, a son of Khufu, of the fourth dynasty.
The tombs of Egypt abound in pictures of boats and larger vessels, and many wooden models of them have also been found in the sarcophagi. There is in the Berlin Museum a model of a boat similar in general arrangement to the one just described. It is decked over and provided with a cabin amidships, which does not occupy the full width of the vessel. Fig. 4 is a vessel of later date and larger size than that found in the tomb of Ka Khont Khut, but its general characteristics are similar. From the number of paddlers it must have been at least 100 feet in length. In this case we see the mast is erected and a square sail set. The bow and stern also come much higher out of the water. The roof of the cabin is prolonged aft, so as to form a shelter for the steersman and a seat for the man holding the ropes. Similarly it is prolonged forward, so as to provide a shelter for the captain, or owner. The method of steering with oars continued in use for centuries; but in later and larger vessels the steering-oars, which were of great size, were worked by a mechanical arrangement. The illustration was taken originally from a fourth-dynasty tomb at Kôm-el-Ahmars.
There are also extant pictures of Egyptian cattle-boats, formed of two ordinary barges lashed together, with a temporary house, or cattle-shed, constructed across them. The history of Egypt, as inscribed in hieroglyphs on the ancient monuments, relates many instances of huge sarcophagi, statues, and obelisks having been brought down the Nile on ships. The tombs and monuments of the sixth dynasty are particularly rich in such records. In the tomb of Una, who was a high officer under the three kings, Ati, Pepi I., and Mer-en-Ra, are inscriptions which shed a flood of light on Egyptian shipbuilding of this period, and on the uses to which ships were put. In one of them we learn how Una was sent by Pepi to quarry a sarcophagus in a single piece of limestone, in the mountain of Jurra, opposite to Memphis, and to transport it, together with other stones, in one of the king's ships. In another it is related how he headed a military expedition1 against the land of Zerehbah, "to the north of the land of the Hirusha," and how the army was embarked in ships.
In the reign of Pepi's successor, Mer-en-Ra, Una appears to have been charged with the quarrying and transport of the stones destined for the king's pyramid, his sarcophagus, statue, and other purposes. The following passage from the inscriptions on his tomb gives even the number of the ships and rafts which he employed on this work:2
"His Holiness, the King Mer-en-Ra, sent me to the country of Abhat to bring back a sarcophagus with its cover, also a small pyramid, and a statue of the King Mer-en-Ra, whose pyramid is called Kha-nofer ('the beautiful rising'). And his Holiness sent me to the city of Elephantine to bring back a holy shrine, with its base of hard granite, and the doorposts and cornices of the same granite, and also to bring back the granite posts and thresholds for the temple opposite to the pyramid Kha-nofer, of King Mer-en-Ra. The number of ships destined for the complete transport of all these stones consisted of six broad vessels, three tow-boats, three rafts, and one ship manned with warriors."
Further on, the inscriptions relate how stone for the Pyramid was hewn in the granite quarries at Assouan, and how rafts were constructed, 60 cubits in length and 30 cubits in breadth, to transport the material. The Royal Egyptian cubit was 20·67 inches in length, and the common cubit 18·24 inches. The river had fallen to such an extent that it was not possible to make use of these rafts, and others of a smaller size had to be constructed. For this purpose Una was despatched up the river to the country of Wawa-t, which Brugsch considered to be the modern Korosko. The inscription states—
"His Holiness sent me to cut down four forests in the South, in order to build three large vessels and four towing-vessels out of the acacia wood in the country of Wawa-t. And behold the officials of Araret, Aam, and Mata caused the wood to be cut down for this purpose.
I executed all this in the space of a year. As soon as the waters rose I loaded the rafts with immense pieczof granite for the Pyramid Kha-nofer, of the King Mer-en-Ra."
Mr. Villiers Stuart found several pictures of large ships of this remote period at Kasr-el-Syad on the Nile, about 70 miles below Thebes, in the tomb of Ta-Hotep, who lived in the reigns of Pepi I. and his two successors. These boats were manned with twenty-four rowers, and had two cabins, one amidships and the other astern.3 The same explorer describes the contents of a tomb of the sixth dynasty at Gebel Abû Faida, on the walls of which he observed the painting of a boat with a triple mast (presumably made of three spars arranged like the edges of a triangular pyramid), and a stern projecting beneath the water.
Between the sixth and the eleventh dynasties Egyptian history is almost an utter blank. The monuments contain no records for a period of about 600 years. We are, therefore, in complete ignorance of the progress of shipbuilding during this epoch. It was, however, probably considerable; for, when next the monuments speak it is to give an account of a mercantile expedition on the high seas. In the Valley of Hamâmât, near Coptos, about 420 miles above Cairo, is an inscription on the rocks, dating from the reign of Sankh-ka-Ra, the last king of the eleventh dynasty (about 2800 b.c. ), describing an expedition by sea to the famous land of Punt, on the coast of the Red Sea. This expedition is not to be confounded with another, a much more famous one, to the same land, carried out by direction of Queen Hatshepsu of the eighteenth dynasty, about eleven centuries later. Sankh-ka-Ra's enterprise is, however, remarkable as being the first over-sea maritime expedition recorded in the world's history. It may be noted that it took place at about the date usually assigned to Noah's ark.
The town of Coptos was of considerable commercial importance, having been at one end of the great desert route from the Nile to the Red Sea port of Kosseir, whence most of the Egyptian maritime expeditions started. The land of Punt, which was the objective of the expedition, is now considered to be identical with Somaliland. The following extracts from the inscription give an excellent idea of the objects and conduct of the expedition, which was under the leadership of a noble named Hannu, who was himself the author of the inscription:4
"I was sent to conduct ships to the land of Punt, to fetch for Pharaoh sweet-smelling spices, which the princes of the red land collect out of fear and dread, such as he inspires in all nations. And I started from the City of Coptos, and his Holiness gave the command that the armed men, who were to accompany me, should be from the south country of the Thebaîd."
After describing the arrangements which he made for watering the expedition along the desert route, he goes on to say:—
"Then I arrived at the port Seba, and I had ships of burthen built to bring back products of all kinds. And I offered a great sacrifice of oxen, cows, and goats. And when I returned from Seba I had executed the King's command, for I brought him back all kinds of products which I had met with in the ports of the Holy Land (Punt). And I came back by the road of Uak and Rohan, and brought with me precious stones for the statues of the temples. But such a thing never happened since there were kings; nor was the like of it ever done by any blood relations who were sent to these places since the time (of the reign) of the Sun-god Ra."
From the last sentence of the above quotation we may infer that previous expeditions had been sent to the land of Punt. Communication with this region must, however, have been carried on only at considerable intervals, for we read that 18Hannu had to build the ships required for the voyage. Unfortunately, no representations of these vessels accompany the inscription.
Between the end of the eleventh and the commencement of the eighteenth dynasty, the monuments give us very little information about ships or maritime expeditions. Aahmes, the first king of the latter dynasty, freed Egypt from the domination of the Shepherd Kings by means of a naval expedition on the Nile and the Mediterranean. A short history of this campaign is given in the tomb of another Aahmes, near El Kab, a place on the east bank of the river, 502 miles south of Cairo. This Aahmes was a captain of sailors who served under Sequenen-Ra, King Aahmes, Amenophis I., and Thotmes I. King Aahmes is supposed to have been the Pharaoh of the Old Testament who knew not Joseph. He lived about 1700 b.c.
By far the most interesting naval records of this dynasty are the accounts, in the temple of Dêr-el-Bahari close to Thebes, of the famous expedition to the land of Punt, carried out by order of that remarkable woman Queen Hatshepsu, who was the daughter of Thotmes I., half-sister and wife of Thotmes II., and aunt and step-mother of the famous king Thotmes III. She appears to have been called by her father during his lifetime to share the throne with him, and to have practically usurped the government during the reign of her husband and during the early years of the reign of her nephew.
The expedition to the land of Punt was evidently one of the most remarkable events of her reign. It took place about 1600 b.c. —that is to say, about three centuries before the Exodus. The history of the undertaking is given at great length on the retaining wall of one of the terraces of the temple, and the various scenes and events are illustrated by carvings on the same wall, in as complete a manner as though the expedition19 had taken place in the present time, and had been accompanied by the artists of one of our pictorial newspapers. Fortunately, the great bulk of the carvings and inscriptions remain to this day, and we possess, therefore, a unique record of a trading expedition carried out at this remote period.
The carvings comprise representations of the ships going out. The landing at the "incense terraced-mountain," and the meeting with the princes and people of this strange land, are also shown. We have pictures of their pile dwellings, and of the trees and animals of the country, and also portraits of the King of Punt, of his wife and children. Lastly, we have representations of the ships returning to Egypt, laden with the precious incense of the land and with other merchandise, and also of the triumphant reception of the members of the expedition at Thebes.
One of the inscriptions relates as follows:5
"The ships were laden to the uttermost with the wonderful products of the land of Punt, and with the different precious woods of the divine land, and with heaps of the resin of incense, with fresh incense trees, with ebony, (objects) of ivory set in pure gold from the land of the 'Amu, with sweet woods, Khesit-wood, with Ahem incense, holy resin, and paint for the eyes, with dog-headed apes, with long-tailed monkeys and greyhounds, with leopard-skins, and with natives of the country, together with their children. Never was the like brought to any king (of Egypt) since the world stands."
The boast contained in the concluding sentence was obviously not justified, as we know the same claims were made in the inscription in the valley of Hammamât, describing the previous expedition to Punt, which took place eleven centuries earlier.
From the frontispiece, Fig. 1, we can form an accurate idea of the ships used in the Red Sea trade in the time of the eighteenth dynasty. They were propelled by rowers instead of by paddlers, as in all the previous examples. There were fifteen rowers on each side, and, allowing four feet for the distance between each seat, and taking account of the length of the overhanging portions at bow and stern, the length of each vessel could have been little short of a hundred feet. They were apparently decked over and provided with raised cabins at the two extremities. The projections marked along the sides may indicate the ends of beams, or they may, as some writers have supposed, have been pieces of timber against which the oars could be worked in narrow and shallow water.
Fig. 5.—Nile barge carrying obelisks. About 1600 b.c.
These vessels were each rigged with a huge square sail. The spars carrying the sail were as long as the boats themselves, and were each formed of two pieces spliced together in the middle. The stems and sterns were not waterborne. In order to prevent the vessel from hogging under the influence of the weights of the unsupported ends, a truss was employed, similar in principle and object to those used to this day in American river steamers. The truss was formed by erecting four or more pillars in the body of the vessel, terminating at a height21 of about six feet above the gunwale, in crutches. A strong rope running fore and aft was passed over these crutches and also round the mast, the two ends of the rope having been so arranged as to gird and support the stem and stern respectively.
The Temple of Dêr-el-Bahari contained also a most interesting illustrated account of the transport of two great obelisks down the Nile in the reign of the same queen. Unfortunately, parts of the description and of the carvings have been lost, but enough remains to give us a very clear idea of the vessels employed and of the method of transport. Fig. 5 shows the type of barge employed to carry the obelisks, of which there were two. The dotted lines show the portions of the carving which are at present missing. The restoration was effected by Monsieur Edouard Naville.6 The restoration is by no means conjectural. The key to it was furnished by a hieroglyph in the form of the barge with the obelisks on deck. Some of these obelisks were of very large size. There are two, which were hewn out of granite for Queen Hatshepsu, still at the Temple of Karnak. They may, very possibly, be the two which are referred to in the description at Dêr-el-Bahari. One of them is 98 feet and the other 105 feet in height. The larger of the two has been calculated to weigh 374 tons, and the two together may have weighed over 700 tons. To transport such heavy stones very large barges would have been required. Unfortunately, the greater portion of the inscription describing the building of these boats has been lost, but what remains states that orders were given to collect "sycamores from the whole land (to do the) work of building a very great boat." There is, however, an inscription still intact in the tomb of an ancient Egyptian named Anna, who lived in the reigns of the three kings Thotmes (and therefore also during22that of Queen Hatshepsu), which relates that, having to transport two obelisks for Thotmes I., he built a boat 120 cubits long and 40 cubits wide. If the royal cubit of 20·72 inches was referred to, the dimensions of the boat would have been 200 feet long by 69 feet wide. This is possibly the very boat illustrated on the walls of Dêr-el-Bahari; for, it having evidently been a matter of some difficulty to collect the timber necessary to build so large a vessel, it seems only natural to suppose that it would be carefully preserved for the future transport of similar obelisks. If, however, it was found necessary to construct a new boat in order to transport Queen Hatshepsu's obelisks, we may be fairly certain that it was larger than the one whose dimensions are given above, for the taller of her two obelisks at Karnak is the largest that has been found in Egypt in modern times. The obelisk of rose granite of Thotmes I., still at Karnak, is 35 feet shorter, being 70 feet, or exactly the same height as the one called Cleopatra's Needle, now on the Thames Embankment.
The barge shown in Fig. 5 was strengthened, apparently, with three tiers of beams; it was steered by two pairs of huge steering-oars, and was towed by three parallel groups, each consisting of ten large boats. There were 32 oarsmen to each boat in the two wing groups, and 36 in each of the central groups: there were, therefore, exactly one thousand oars used in all. The towing-cable started from the masthead of the foremost boat of each group, and thence passed to the bow of the second one, and so on, the stern of each boat being left perfectly free, for the purpose, no doubt, of facilitating the steering. The flotilla was accompanied by five smaller boats, some of which were used by the priests, while the others were despatch vessels, probably used to keep up communications with the groups of tugs.
There are no other inscriptions, or carvings, that have as yet23 been discovered in Egypt which give us so much information regarding Egyptian ships as those on the Temple at Dêr-el-Bahari. From time to time we read of naval and mercantile expeditions, but illustrations of the ships and details of the voyages are, as a rule, wanting. We know that Seti I., of the nineteenth dynasty, whose reign commenced about 1366 b.c., was a great encourager of commerce. He felled timber in Lebanon for building ships, and is said to have excavated a canal between the Nile and the Red Sea. His successor, the famous Ramses II., carried on wars by sea, as is proved by the inscriptions in the Temple at Abû Simbel in Nubia, 762 miles above Cairo.
In the records of the reign of Ramses III., 1200 b.c., we again come upon illustrations of ships in the Temple of Victory at Medînet Habû, West Thebes. The inscriptions describe a great naval victory which this king won at Migdol, near the Pelusiac mouth of the Nile, over northern invaders, probably Colchians and Carians. Fig. 6 shows one of the battleships. It is probably more a symbolical than an exact representation, nevertheless it gives us some valuable information. For instance, we see that the rowers were protected against the missiles of their adversaries by strong bulwarks, and the captain occupied a crow's nest at the masthead.
Ramses III. did a great deal to develop Egyptian commerce. His naval activities were by no means confined to the Mediterranean, for we read that he built a fleet at Suez, and traded with the land of Punt and the shores of the Indian Ocean. Herodotus states that, in his day, the docks still existed at the head of the Arabian Gulf where this Red Sea fleet was built.
Pharaoh Nekau (Necho), who reigned from 612 to 596 b.c., and who defeated Josiah, King of Judah, was one of the kings of Egypt who did most to encourage commerce. He commenced a canal to join the Pelusiac branch of the Nile at24 Bubastis with the Red Sea, but never finished it. It was under his directions that the Phœnicians, according to Herodotus, made the voyage round Africa referred to on p. 27. When Nekau abandoned the construction of the canal he built two fleets of triremes, one for use in the Mediterranean, and the other for the Red Sea. The latter fleet was built in the Arabian Gulf.
Fig. 6.—Battleship of Ramses III. About 1200 b.c.
In later times the seaborne commerce of Egypt fell, to a large extent, into the hands of the Phœnicians and Greeks.
Herodotus (484 to 423 b.c. ) gives an interesting account of the Nile boats of his day, and of the method of navigation of the river.7
"Their boats, with which they carry cargoes, are made of the thorny acacia.... From this tree they cut pieces of wood about two cubits in length, and arrange them like bricks, fastening the boat together by a great number of long bolts through the two-cubit pieces; and when they have thus fastened the boat together they lay cross-pieces over the top, using no ribs for the sides; and within they caulk the seams with papyrus. They make one steering-oar for it, which is passed through the bottom of the boat, and they have a mast of acacia and sails of papyrus. These boats cannot sail up the river unless there be a very fresh wind blowing, but are towed.... Down stream they travel as follows: they have a door-shaped crate, made of tamarisk wood and reed mats sewn together, and also a stone of about two talents' weight, bored with a hole; and of these the boatman lets the crate float on in front of the boat, fastened with a rope, and the stone drag behind by another rope. The crate then, as the force of the stream presses upon it, goes on swiftly and draws on the ... boats, ... while the stone, dragging after it behind and sunk deep in the water, keeps its course straight."
In connection with this account it is curious to note that, at so late a period as the time of Herodotus, papyrus was used for the sails of Nile boats, for we know that, for many centuries previously, the Egyptians were adepts in the manufacture of linen, and actually exported fine linen to Cyprus to be used as sail-cloth.
Before concluding this account of shipbuilding in ancient Egypt, it may be mentioned that, in the year 1894, the French Egyptologist, Monsieur J. de Morgan, discovered several Nile boats of the time of the twelfth dynasty (2850 b.c. ) admirably preserved in brick vaults at Dashûr, a little above Cairo, on the left bank of the river. The site of these vaults is about one hour's ride from the river and between 70 and 80 feet above the plain. The boats are about 33 feet long, 7 to 8 feet wide, and 2½ to 3 feet deep. As there were neither rowlocks nor masts, and as they were found in close proximity to some Royal tombs, it is considered probable that they were funeral boats, used for carrying royal mummies across the river. They are constructed of planks of acacia and sycamore, about three inches thick, which are dovetailed together and fastened with trenails. There are floors, but no ribs. In this respect the account of Herodotus is remarkably confirmed. The method of construction was so satisfactory that, although they are nearly 5,000 years old, they held rigidly together after their supports had been removed by Monsieur de Morgan. They were steered by two large paddles. The discovery of these26 boats is of extraordinary interest, for they were built at the period usually assigned to Noah's ark. It is a curious fact that they should have been found so far from the river, but we know from other sources—such as the paintings found in papyrus books—that it was the custom of the people to transport the mummies of royal personages, together with the funeral boats, on sledges to the tomb.
The famous galleys of the Egypt of the Ptolemies belonged to the period of Greek and Roman naval architecture, and will be referred to later.
From the time of the ancient Egyptian vessels there is no record whatever of the progress of naval architecture till we come to the period of the Greeks, and even the early records relating to this country are meagre in the extreme. The Phœnicians were among the first of the races who dwelt on the Mediterranean seaboard to cultivate a seaborne commerce, and to them, after the Egyptians, is undoubtedly due the early progress made in sea-going ships. This remarkable people is said to have originally come to the Levant from the shores of the Persian Gulf. They occupied a strip of territory on the seaboard to the north of Palestine, about 250 miles long and of the average width of only 12 miles. The chief cities were Tyre and Sidon. There are only three representations known to be in existence of the Phœnician ships. They must have been of considerable size, and have been well manned and equipped, for the Phœnicians traded with every part of the then known world, and founded colonies—the principal of which was Carthage—at many places along the coast-line of the Mediterranean. A proof of the size and seaworthiness of their ships was the fact that they made very distant voyages across notoriously stormy seas; for instance, to Cornwall in search of tin, and probably also to the south coast of Ireland. They also coasted along the western shores of Africa. Somewhere27 between the years 610 and 594 b.c.some Phœnician ships, acting under instructions from Pharaoh Nekau, are said to have circumnavigated Africa, having proceeded from the Indian to the Southern Ocean, and thence round by the Atlantic and through the Pillars of Hercules home. The voyage occupied more than two years, a circumstance which was due to the fact that they always landed in the autumn and sowed a tract of country with corn, and waited on shore till it was fit to cut. In the time of Solomon the joint fleets of the Israelites and Phœnicians made voyages from the head of the Red Sea down the coasts of Arabia and Eastern Africa, and even to Persia and Beluchistan, and probably also to India. The Phœnicians were not only great traders themselves, but they manned the fleets of other nations, and built ships for other peoples, notably for the Egyptians and Persians. It is unfortunate that we have so few representations of the Phœnician ships, but we are justified in concluding that they were of the same general type as those which were used by the Greeks, the Carthaginians, and eventually by the Romans. The representations of their vessels known to be in existence were found8 by the late Sir Austin Layard in the palace built by King Sennacherib at Kouyunjik, near Nineveh, about 700 b.c. One of these is shown in Fig. 7. Though they were obviously rather symbols of ships than faithful representations, we can, nevertheless, gather from them that the warship was a galley provided with a ram, and fitted with a mast carrying a single square sail; there were also two banks of oars on each side. The steering was accomplished by two large oars at the stern, and the fighting troops were carried on a deck or platform raised on pillars above the heads of the rowers.
Portion of a Phœnician galley. About 700 b.c
Fig. 7.—Portion of a Phœnician galley. About 700 b.c. From Kouyunjik (Nineveh).